八年级数学知识点总结-全面简明的复习资料

八年级下册数学知识点总结篇1

八年级数学知识点总结-全面简明的复习资料

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

八年级下册数学知识点总结篇2

三角形的外角:

三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

三角形的外角特征:

①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;

②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;

③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。

性质:

①. 三角形的外角与它相邻的内角互补。

②. 三角形的一个外角等于和它不相邻的两个内角的和。

③. 三角形的一个外角大于任何一个和它不相邻的内角。

④. 三角形的外角和等于360。

设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

定理:三角形的一个外角等于不相邻的两个内角和。

定理:三角形的三个内角和为180度。

八年级下册数学知识点总结篇3

全等三角形知识点

1、全等图形:能够完全重合的两个图形就是全等图形。

2、全等图形的性质:全等多边形的对应边、对应角分别相等。

3、全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:

全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:

(1)周长相等的两个三角形,不一定全等;

(2)面积相等的两个三角形,也不一定全等。

小练习

1、下列说法中正确的说法为()

①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,

A、①②③④B、①③④C、①②④D、②③④

2、一个正方形的侧面展开图有()个全等的正方形

A、2个B、3个C、4个D、6个

3、对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有()

①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等、

A、1个B、2个C、3个D、4个

三角形全等的判定知识点

1、三角形全等的判定公理及推论有:

(1)“边角边”简称“SAS”,两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。

(2)“角边角”简称“ASA”,两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。

(3)“边边边”简称“SSS”,三边对应相等的两个三角形全等(“边边边”或“SSS”)。

(4)“角角边”简称“AAS”,有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。

2、直角三角形全等的判定

利用一般三角形全等的判定都能证明直角三角形全等、

斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”)、

注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。

小练习

1、已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是______

核心考点:全等三角形的判定

2、王师傅在做完门框后,常常在门框上斜钉两根木条,这样做的数学原理是______

核心考点:三角形的稳定性

3、将两根钢条AA’、BB’的中点O连在一起,使AA’、BB’可以绕着点O自由旋转,就做成了一个测量工件,则A’B’的长等于内槽宽AB,那么判定△OAB≌△OA’B’的理由是______

核心考点:全等三角形的判定

角的平分线的性质知识点

1、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

2、判定定理:到角的两边距离相等的点在该角的角平分线上。

3、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:

①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),

②、回顾三角形判定,搞清我们还需要什么,

③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)

八年级下册数学知识点总结篇4

数据的收集、整理与描述

一.知识框架

二.知识概念

1.全面调查:考察全体对象的调查方式叫做全面调查。

2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。

3.总体:要考察的全体对象称为总体。

4.个体:组成总体的每一个考察对象称为个体。

5.样本:被抽取的所有个体组成一个样本。

6.样本容量:样本中个体的数目称为样本容量。

7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。

8.频率:频数与数据总数的比为频率。

9.组数和组距:在统计数据时,把数据按照一定的’范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距。

好牛新坐标

发布者:知识学院,火焰兔收录并登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不做权威认证,如若验证其真实性,请咨询相关权威专业人士。https://huoyantu.com/277742.html

版权声明:

  • 火焰兔遵守相关法律法规,由于本站资源全部来源于网络程序/用户发布/投稿,故量太大无法一一准确核实资源侵权的真实性;
  • 出于传递信息之目的,故火焰兔可能会误刊发损害或影响您的合法权益,请您积极与我们联系处理(所有内容不代表本站观点与立场);
  • 因时间、精力有限,我们无法一一核实每一条消息的真实性,但我们会在发布之前尽最大努力来核实这些信息;
  • 无论出于何种目的要求本站删除内容,您均需要提供根据国家版权局发布的示范格式 《要求删除或断开链接侵权网络内容的通知》

    国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明:http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
    请按照此通知格式填写(或提供具有法律效应且证据链完整的证明)发至本站的邮箱 huoyantu@qq.com
    (收到核实后 24小时内绝对处理)
  • (0)
    知识学院的头像知识学院作者
    上一篇 2023年7月20日 下午9:16
    下一篇 2023年7月20日 下午9:17

    你可能喜欢的文章

    发表回复

    您的邮箱地址不会被公开。 必填项已用 * 标注

    火焰兔欢迎您!