初中数学公式和定理-全面、完整的常用和重要公式集合

想摘玫瑰,就要先折刺枝;想走坦途,就要斩除荆棘;想看到天明,就要勇闯夜寂;想步入高中,就要倍加努力:厚德载物,天道酬勤,祝中考顺利!下面是小编给大家带来的初中数学公式和定理,欢迎大家阅读参考,我们一起来看看吧!

初中数学公式和定理-全面、完整的常用和重要公式集合

初中数学公式和定理

1、初中数学公式

完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2

平方差公式:(a+b)(a-b)=a^2-b^2

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理

2、判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac<0 注:方程没有实根,有共轭复数根

3、三角函数公式

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

倍角公式

tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

半角公式

sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

4、和差化积

2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

5、某些数列前n项和

1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

2+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6

13+23+33+43+53+63+…n3=n2(n+1)2/4 1_2+2_3+3_4+4_5+5_6+6_7+…+n(n+1)=n(n+1)(n+2)/3

正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圆半径

余弦定理 b2=a2+c2-2accosB 注:角B是边a和边c的夹角

圆的标准方程 (x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标

圆的一般方程 x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c’_h

正棱锥侧面积 S=1/2c_h’ 正棱台侧面积 S=1/2(c+c’)h’

圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

初中数学定理

1、过两点有且只有一条直线

2、两点之间线段最短

3、同角或等角的补角相等

4、同角或等角的余角相等

5、过一点有且只有一条直线和已知直线垂直

6、直线外一点与直线上各点连接的所有线段中,垂线段最短

7、平行公理经过直线外一点,有且只有一条直线与这条直线平行

8、如果两条直线都和第三条直线平行,这两条直线也互相平行

9、同位角相等,两直线平行

10、内错角相等,两直线平行

11、同旁内角互补,两直线平行

12、两直线平行,同位角相等

13、两直线平行,内错角相等

初中数学公式定理

乘法与因式分 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)

三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a|

一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a

根与系数的关系 X1+X2=-b/a X1_X2=c/a 注:韦达定理

判别式

b2-4ac=0 注:方程有两个相等的实根

b2-4ac>0 注:方程有两个不等的实根

b2-4ac0

抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py

直棱柱侧面积 S=c_h 斜棱柱侧面积 S=c’_h

正棱锥侧面积 S=1/2c_h’ 正棱台侧面积 S=1/2(c+c’)h’

圆台侧面积 S=1/2(c+c’)l=pi(R+r)l 球的表面积 S=4pi_r2

圆柱侧面积 S=c_h=2pi_h 圆锥侧面积 S=1/2_c_l=pi_r_l

弧长公式 l=a_r a是圆心角的弧度数r >0 扇形面积公式 s=1/2_l_r

锥体体积公式 V=1/3_S_H 圆锥体体积公式 V=1/3_pi_r2h

斜棱柱体积 V=S’L 注:其中,S’是直截面面积, L是侧棱长

柱体体积公式 V=s_h 圆柱体 V=pi_r2h

常见的初中数学公式

1.过两点有且只有一条直线

2.两点之间线段最短

3.同角或等角的补角相等

4.同角或等角的余角相等

5.过一点有且只有一条直线和已知直线垂直

6.直线外一点与直线上各点连接的所有线段中,垂线段最短

7.平行公理 经过直线外一点,有且只有一条直线与这条直线平行

8.如果两条直线都和第三条直线平行,这两条直线也互相平行

9.同位角相等,两直线平行

10.内错角相等,两直线平行

11.同旁内角互补,两直线平行

12.两直线平行,同位角相等

13.两直线平行,内错角相等

14.两直线平行,同旁内角互补

15.定理 三角形两边的和大于第三边

16.推论 三角形两边的差小于第三边

17.三角形内角和定理 三角形三个内角的和等于180

18.推论1 直角三角形的两个锐角互余

19.推论2 三角形的一个外角等于和它不相邻的两个内角的和

20.推论3 三角形的一个外角大于任何一个和它不相邻的内角

21.全等三角形的对应边、对应角相等

22.边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

23.角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

24.推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

25.边边边公理(SSS) 有三边对应相等的两个三角形全等

26.斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27.定理1 在角的平分线上的点到这个角的两边的距离相等

28.定理2 到一个角的两边的距离相同的点,在这个角的平分线上

29.角的平分线是到角的两边距离相等的所有点的集合

30.等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

31.推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

32.等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

33.推论3 等边三角形的各角都相等,并且每一个角都等于60

34.等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

35.推论1 三个角都相等的三角形是等边三角形

36.推论 2 有一个角等于60的等腰三角形是等边三角形

37.在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半

38.直角三角形斜边上的中线等于斜边上的一半

39.定理 线段垂直平分线上的点和这条线段两个端点的距离相等

40.逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

41.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合

42.定理1 关于某条直线对称的两个图形是全等形

43.定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线

44.定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上

45.逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

46.勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2

47.勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

48.定理 四边形的内角和等于360

49.四边形的外角和等于360

50.多边形内角和定理 n边形的内角的和等于(n-2)180

51.推论 任意多边的外角和等于360

52.平行四边形性质定理1 平行四边形的对角相等

53.平行四边形性质定理2 平行四边形的对边相等

54.推论 夹在两条平行线间的平行线段相等

55.平行四边形性质定理3 平行四边形的对角线互相平分

56.平行四边形判定定理1 两组对角分别相等的四边形是平行四边形

57.平行四边形判定定理2 两组对边分别相等的四边形是平行四边形

58.平行四边形判定定理3 对角线互相平分的四边形是平行四边形

59.平行四边形判定定理4 一组对边平行相等的四边形是平行四边形

60.矩形性质定理1 矩形的四个角都是直角

61.矩形性质定理2 矩形的对角线相等

62.矩形判定定理1 有三个角是直角的四边形是矩形

63.矩形判定定理2 对角线相等的平行四边形是矩形

64.菱形性质定理1 菱形的四条边都相等

65.菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角

66.菱形面积=对角线乘积的一半,即S=(ab)2

67.菱形判定定理1 四边都相等的四边形是菱形

68.菱形判定定理2 对角线互相垂直的平行四边形是菱形

69.正方形性质定理1 正方形的四个角都是直角,四条边都相等

70.正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

71.定理1 关于中心对称的两个图形是全等的

72.定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分

73.逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称

74.等腰梯形性质定理 等腰梯形在同一底上的两个角相等

75.等腰梯形的两条对角线相等

76.等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形

77.对角线相等的梯形是等腰梯形

78.平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等

79.推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰

80.推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边

81.三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半

82.梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 L=(a+b)2 S=Lh

83.(1)比例的基本性质 如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d

84.(2)合比性质 如果a/b=c/d,那么(ab)/b=(cd)/d

85.(3)等比性质 如果a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b

86.平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段成比例

87.推论 平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例

88.定理 如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边

89.平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例

90.定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似

91.相似三角形判定定理1 两角对应相等,两三角形相似(ASA)

92.直角三角形被斜边上的高分成的两个直角三角形和原三角形相似

93.判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)

94.判定定理3 三边对应成比例,两三角形相似(SSS)

95.定理 如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

96.性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比

97.性质定理2 相似三角形周长的比等于相似比

98.性质定理3 相似三角形面积的比等于相似比的平方

99.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值

100.任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值。

数学定理:相似形定理

2相似三角形

21相似三角形

对应角相等,对应边成比例的三角形,叫做相似三角形

22三角形相似的判定

判定定理1如果一个三角形的两个角与另一个三角形的两个角对应相等,那么两三角形相似

判定定理2如果一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹角相等,那么两三角形相似

判定定理3如果一个三角形的三边与另一个三角形的三边对应成比例,那么两三角形相似

推论1两直角三角形中有一锐角对应相等,那两三角相似

推论2平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似

定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似

23相似三角形的性质

定理相思三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比

定理相思三角形周长的比等于相似比

定理相思三角形面积的比等于相似比的平方

广义勾股定理平行四边形两条对角线的平方和等于它的四边的平方和,或等于相邻两边平方和的两倍

24平行线分线段成比例定理

定理两条或两条以上的平行线,截任意一角的两边,所截出的对应线段成比例

推论三条或三条以上的平行线截任意两条直线,所截得的对应线段成比例

25相似多边形

定义如果两个边数相同的多变形的角对应相等且它们的边对应成比例,那么这两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比

定理两个相似多边形对应对角线的比等于相似比

定理两个相似多边形的对应三角形相似,其相似比等于相似多边形的相似比

定理相似多边形的周长比等于相似比

定理相似多边形的面积比等于相似比的平方

初中数学公式和定理相关文章:

★ 中考数学定理与公式整理

★ 中考数学之圆的公式定理整理

★ 初中生该如何学习中考数学 中考数学必背公式归纳

★ 初三数学圆的知识点和公式总结

★ 初中数学解题十大技巧方法

★ 初中数学重要知识点归纳有哪些

★ 初中数学学习方法总结100条

★ 初中数学各年级重点最新

★ 初中数学几何知识点全面剖析

★ 初中数学各类三角形的性质内容

好牛新坐标

发布者:知识学院,火焰兔收录并登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不做权威认证,如若验证其真实性,请咨询相关权威专业人士。https://huoyantu.com/277571.html

版权声明:

  • 火焰兔遵守相关法律法规,由于本站资源全部来源于网络程序/用户发布/投稿,故量太大无法一一准确核实资源侵权的真实性;
  • 出于传递信息之目的,故火焰兔可能会误刊发损害或影响您的合法权益,请您积极与我们联系处理(所有内容不代表本站观点与立场);
  • 因时间、精力有限,我们无法一一核实每一条消息的真实性,但我们会在发布之前尽最大努力来核实这些信息;
  • 无论出于何种目的要求本站删除内容,您均需要提供根据国家版权局发布的示范格式 《要求删除或断开链接侵权网络内容的通知》

    国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明:http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
    请按照此通知格式填写(或提供具有法律效应且证据链完整的证明)发至本站的邮箱 huoyantu@qq.com
    (收到核实后 24小时内绝对处理)
  • (0)
    知识学院的头像知识学院作者
    上一篇 2023年7月11日 下午6:49
    下一篇 2023年7月11日 下午6:50

    你可能喜欢的文章

    发表回复

    您的邮箱地址不会被公开。 必填项已用 * 标注

    火焰兔欢迎您!