本文给大家分享一套贪心推荐系统算法工程师资源课程视频,希望可以帮助有需要的同学
由于近些年深度学习技术的飞速发展,大力加速推动了AI在互联网以及传统各个行业的商业化落地,其中,推荐系统、计算广告等领域彰显的尤为明显。由于推荐系统与提升用户量以及商业化变现有着密不可分的联系,各大公司都放出了众多推荐系统相关职位,且薪水不菲,目前发展势头很猛。
CF、FM、DSSM、DeepFM等这些推荐业界明星模型,你真的清楚他们的内部运行原理以及使用场景吗,逻辑回归为什么用sigmoid函数?有确切的理论推导吗?FM模型与SVM有什么相似之处吗?FM固然可以用作为打分模型,但它可以用来做matching吗,如果可以,如何做?item2Vec模型在业界是如何缓解冷启动的问题的?双塔模型优势在哪?深度模型到底是如何做matching的,是离线计算好结果还是实时的对网络进行前向计算?DeepFM具体实现时,wide端和deep端的优化方式是一样的吗?基于Graph的推荐方法在业界的应用目前是怎样的?
课程目录
Week 1:机器学习基础
Week 2:推荐系统基础
Week 3:内容画像与用户画像
Week 4:用户画 Week
Week 5:传统match方法
Week 6:深度match方法
Week 7:经典Ranking方法
Week 8: GraphEmbedding 大家族与用户行为构建
Week 9:引入sideinfo信息的图推荐、基于推理的图推荐
Week 10:深度Ranking模型
Week 11:重排序与多目标学习
Week 12:热点文章实时召回
Week 13:多目标与用户多兴趣
Week 14:强化学习与推荐系统
Week 15:项目总结、部署
https://zy.98ke.com/zyjn/35007.html?ref=7
发布者:知识学院,火焰兔收录并登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不做权威认证,如若验证其真实性,请咨询相关权威专业人士。https://huoyantu.com/196021.html
版权声明:
国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明:http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
请按照此通知格式填写(或提供具有法律效应且证据链完整的证明)发至本站的邮箱 huoyantu@qq.com
(收到核实后 24小时内绝对处理)