约翰·冯·诺依曼生于1903年12月28日,是匈牙利数学家,他开创了现代计算机理论,其体系结构沿用至今。
约翰·冯·诺依曼 – 人物评价
20世纪即将过去,21世纪就要到来.我们站在世纪之交的大门槛,回顾20世纪科学技术的辉煌发展时,不能不提及20世纪最杰出的数学家之一的冯·诺依曼.众所周知,1946年发明的电子计算机,大大促进了科学技术的进步,大大促进了社会生活的进步.鉴于冯·诺依曼在发明电子计算机中所起到关键性作用,他被西方人誉为”计算机之父”.而在经济学方面,他也有突破性成就,被誉为“博弈论之父”。在物理领域,冯·诺依曼在30年代撰写的《量子力学的数学基础》已经被证明对原子物理学的发展有极其重要的价值。在化学方面也有相当的造诣,曾获苏黎世高等技术学院化学系大学学位。与同为犹太人的哈耶克一样,他无愧是上世纪最伟大的全才之一。
约翰·冯·诺依曼 – 人物简介
约翰·冯·诺依曼 ( John Von Nouma,1903-1957),美藉匈牙利人,1903年12月28日生于匈牙利的布达佩斯,父亲是一个银行家,家境富裕,十分注意对孩子的教育.冯·诺依曼从小聪颖过人,兴趣广泛,读书过目不忘.据说他6岁时就能用古希腊语同父亲闲谈,一生掌握了七种语言.最擅德语,可在他用德语思考种种设想时,又能以阅读的速度译成英语.他对读过的书籍和论文.能很快一句不差地将内容复述出来,而且若干年之后,仍可如此.1911年一1921年,冯·诺依曼在布达佩斯的卢瑟伦中学读书期间,就崭露头角而深受老师的器重.在费克特老师的个别指导下并合作发表了第一篇数学论文,此时冯·诺依曼还不到18岁.1921年一1923年在苏黎世大学学习.很快又在1926年以优异的成绩获得了布达佩斯大学数学博士学位,此时冯·诺依曼年仅22岁.1927年一1929年冯·诺依曼相继在柏林大学和汉堡大学担任数学讲师。1930年接受了普林斯顿大学客座教授的职位,西渡美国.1931年他成为美国普林斯顿大学的第一批终身教授,那时,他还不到30岁。1933年转到该校的高级研究所,成为最初六位教授之一,并在那里工作了一生. 冯·诺依曼是普林斯顿大学、宾夕法尼亚大学、哈佛大学、伊斯坦堡大学、马里兰大学、哥伦比亚大学和慕尼黑高等技术学院等校的荣誉博士.他是美国国家科学院、秘鲁国立自然科学院和意大利国立林且学院等院的院土. 1954年他任美国原子能委员会委员;1951年至1953年任美国数学会主席.
1954年夏,冯·诺依曼被发现患有癌症,1957年2月8日,在华盛顿去世,终年54岁。
约翰·冯·诺依曼 – 研究领域
冯·诺依曼在数学的诸多领域都进行了开创性工作,并作出了重大贡献.在第二次世界大战前,他主要从事算子理论、集合论等方面的研究.1923年关于集合论中超限序数的论文,显示了冯·诺依曼处理集合论问题所特有的方式和风格.他把集会论加以公理化,他的公理化体系奠定了公理集合论的基础.他从公理出发,用代数方法导出了集合论中许多重要概念、基本运算、重要定理等.特别在1925年的一篇论文中,冯·诺依曼就指出了任何一种公理化系统中都存在着无法判定的命题.
1933年,冯·诺依曼解决了希尔伯特第5问题,即证明了局部欧几里得紧群是李群.1934年他又把紧群理论与波尔的殆周期函数理论统一起来.他还对一般拓扑群的结构有深刻的认识,弄清了它的代数结构和拓扑结构与实数是一致的. 他对算子代数进行了开创性工作,并奠定了它的理论基础,从而建立了算子代数这门新的数学分支.这个分支在当代的有关数学文献中均称为冯·诺依曼代数.这是有限维空间中矩阵代数的自然推广. 冯·诺依曼还创立了博奕论这一现代数学的又一重要分支. 1944年发表了奠基性的重要论文《博奕论与经济行为》.论文中包含博奕论的纯粹数学形式的阐述以及对于实际博奕应用的详细说明.文中还包含了诸如统计理论等教学思想.冯·诺依曼在格论、连续几何、理论物理、动力学、连续介质力学、气象计算、原子能和经济学等领域都作过重要的工作.
冯·诺依曼对人类的最大贡献是对计算机科学、计算机技术、数值分析和经济学中的博弈论的开拓性工作.
现在一般认为ENIAC机是世界第一台电子计算机,它是由美国科学家研制的,于1946年2月14日在费城开始运行.其实由汤米、费劳尔斯等英国科学家研制的”科洛萨斯”计算机比ENIAC机问世早两年多,于1944年1月10日在布莱奇利园区开始运行.ENIAC机证明电子真空技术可以大大地提高计算技术,不过,ENIAC机本身存在两大缺点:(1)没有存储器;(2)它用布线接板进行控制,甚至要搭接几天,计算速度也就被这一工作抵消了.ENIAC机研制组的莫克利和埃克特显然是感到了这一点,他们也想尽快着手研制另一台计算机,以便改进.
1944年,诺伊曼参加原子弹的研制工作,该工作涉及到极为困难的计算。在对原子核反应过程的研究中,要对一个反应的传播做出“是”或“否”的回答。解决这一问题通常需要通过几十亿次的数学运算和逻辑指令,尽管最终的数据并不要求十分精确,但所有的中间运算过程均不可缺少,且要尽可能保持准确。他所在的洛·斯阿拉莫斯实验室为此聘用了一百多名女计算员,利用台式计算机从早到晚计算,还是远远不能满足需要。无穷无尽的数字和逻辑指令如同沙漠一样把人的智慧和精力吸尽。
被计算机所困扰的诺伊曼在一次极为偶然的机会中知道了ENIAC计算机的研制计划,从此他投身到计算机研制这一宏伟的事业中,建立了一生中最大的丰功伟绩。
1944年夏的一天,正在火车站候车的诺伊曼巧遇戈尔斯坦,并同他进行了短暂的交谈。当时,戈尔斯坦是美国弹道实验室的军方负责人,他正参与ENIAC计算机的研制工作。在交谈在,戈尔斯坦告诉了诺伊曼有关ENIAC的研制情况。具有远见卓识的诺伊曼为这一研制计划所吸引,他意识到了这项工作的深远意义。
冯·诺依曼由ENIAC机研制组的戈尔德斯廷中尉介绍参加ENIAC机研制小组后,便带领这批富有创新精神的年轻科技人员,向着更高的目标进军.1945年,他们在共同讨论的基础上,发表了一个全新的”存储程序通用电子计算机方案”–EDVAC(Electronic Discrete Variable AutomaticCompUter的缩写).在这过程中,冯·诺依曼显示出他雄厚的数理基础知识,充分发挥了他的顾问作用及探索问题和综合分析的能力。诺伊曼以“关于EDVAC的报告草案”为题,起草了长达101页的总结报告。报告广泛而具体地介绍了制造电子计算机和程序设计的新思想。这份报告是计算机发展史上一个划时代的文献,它向世界宣告:电子计算机的时代开始了。
EDVAC方案明确奠定了新机器由五个部分组成,包括:运算器、逻辑控制装置、存储器、输入和输出设备,并描述了这五部分的职能和相互关系.报告中,诺伊曼对EDVAC中的两大设计思想作了进一步的论证,为计算机的设计树立了一座里程碑。
设计思想之一是二进制,他根据电子元件双稳工作的特点,建议在电子计算机中采用二进制。报告提到了二进制的优点,并预言,二进制的采用将大简化机器的逻辑线路。
现在使用的计算机,其基本工作原理是存储程序和程序控制,它是由世界著名数学家冯·诺依曼提出的。美籍匈牙利数学家冯·诺依曼被称为“计算机之父”。
实践证明了诺伊曼预言的正确性。如今,逻辑代数的应用已成为设计电子计算机的重要手段,在EDVAC中采用的主要逻辑线路也一直沿用着,只是对实现逻辑线路的工程方法和逻辑电路的分析方法作了改进。
程序内存是诺伊曼的另一杰作。通过对ENIAC的考察,诺伊曼敏锐地抓住了它的最大弱点--没有真正的存储器。ENIAC只在20个暂存器,它的程序是外插型的,指令存储在计算机的其他电路中。这样,解题之前,必需先相好所需的全部指令,通过手工把相应的电路联通。这种准备工作要花几小时甚至几天时间,而计算本身只需几分钟。计算的高速与程序的手工存在着很大的矛盾。
针对这个问题,诺伊曼提出了程序内存的思想:把运算程序存在机器的存储器中,程序设计员只需要在存储器中寻找运算指令,机器就会自行计算,这样,就不必每个问题都重新编程,从而大大加快了运算进程。这一思想标志着自动运算的实现,标志着电子计算机的成熟,已成为电子计算机设计的基本原则。
1946年7,8月间,冯·诺依曼和戈尔德斯廷、勃克斯在EDVAC方案的基础上,为普林斯顿大学高级研究所研制IAS计算机时,又提出了一个更加完善的设计报告《电子计算机逻辑设计初探》.以上两份既有理论又有具体设计的文件,首次在全世界掀起了一股”计算机热”,它们的综合设计思想,便是著名的”冯·诺依曼机”,其中心就是有存储程序原则–指令和数据一起存储.这个概念被誉为’计算机发展史上的一个里程碑”.它标志着电子计算机时代的真正开始,指导着以后的计算机设计.自然一切事物总是在发展着的,随着科学技术的进步,今天人们又认识到”冯·诺依曼机”的不足,它妨碍着计算机速度的进一步提高,而提出了”非冯·诺依曼机”的设想。
约翰·冯·诺依曼 – 所获荣誉
冯·诺依曼还积极参与了推广应用计算机的工作,对如何编制程序及搞数值计算都作出了杰出的贡献。冯·诺依曼于1937年获美国数学会的波策奖;1947年获美国总统的功勋奖章、美国海军优秀公民服务奖;1956年获美国总统的自由奖章和爱因斯坦纪念奖以及费米奖。
冯·诺依曼逝世后,未完成的手稿于1958年以《计算机与人脑》为名出版.他的主要著作收集在六卷《冯·诺依曼全集》中,1961年出版。
另外,冯·诺依曼40年代出版的著作《博弈论和经济行为》,使他在经济学和决策科学领域竖起了一块丰碑。他被经济学家公认为博弈论之父。当时年轻的约翰·纳什在普林斯顿求学期间开始研究发展这一领域,并在1994年凭借对博弈论的突出贡献获得了诺贝尔经济学奖。
约翰·冯·诺依曼 – 主要贡献
1.集合论,数学基础
冯·诺依曼的第一篇论文是和菲克特合写的,是关于车比雪夫多项式求根法的菲叶定理推广,注明的日期是1922年,那时冯·诺依曼还不满18岁。另一篇文章讨论一致稠密数列,用匈牙利文写就,题目的选取和证明手法的简洁显露出冯·诺依曼在代数技巧和集合论直观结合的特征。
1923年当冯·诺依曼还是苏黎世的大学生时,发表了超限序数的论文。文章第一句话就直率地声称“本文的目的是将康托的序数概念具体化、精确。他的关于序数的定义,现在已被普遍采用。
强烈企求探讨公理化是冯·诺依曼的愿望,大约从l925年到l929年,他的大多数文章都尝试着贯彻这种公理化精神,以至在理论物理研究中也如此。当时,他对集合论的表述处理,尤感不够形式化,在他1925年关于集合论公理系统的博士论文中,开始就说“本文的目的,是要给集合论以逻辑上无可非议的公理化论述”。
有趣的是,冯·诺依曼在论文中预感到任何一种形式的公理系统所具有的局限性,模糊地使人联想到后来由哥德尔证明的不完全性定理。对此文章,著名逻辑学家、公理集合论奠基人之一的弗兰克尔教授曾作过如下评价:“我不能坚持说我已把(文章的)一切理解了,但可以确有把握地说这是一件杰出的工作,并且透过他可以看到一位巨人”。
1928年冯·诺依曼发表了论文《集合论的公理化》,是对上述集合论的公理化处理。该系统十分简洁,它用第一型对象和第二型对象相应表示朴素集合论中的集合和集合的性质,用了一页多一点的纸就写好了系统的公理,它已足够建立朴素集合论的所有内容,并借此确立整个现代数学。
冯·诺依曼的系统给出了集合论的也许是第一个基础,所用的有限条公理,具有像初等几何那样简单的逻辑结构。冯·诺依曼从公理出发,巧妙地使用代数方法导出集合论中许多重要概念的能力简直叫人惊叹不已,所有这些也为他未来把兴趣落脚在计算机和“机械化”证明方面准备了条件。
20年代后期,冯·诺依曼参与了希尔伯特的元数学计划,发表过几篇证明部分算术公理无矛盾性的论文。l927年的论文《关于希尔伯特证明论》最为引人注目,它的主题是讨论如何把数学从矛盾中解脱出来。文章强调由希尔伯特等提出和发展的这个问题十分复杂,当时还未得到满意的解答。它还指出阿克曼排除矛盾的证明并不能在古典分析中实现。为此,冯·诺依曼对某个子系统作了严格的有限性证明。这离希尔伯特企求的最终解答似乎不远了。这是恰在此时,1930年哥德尔证明了不完全性定理。定理断言:在包含初等算术(或集合论)的无矛盾的形式系统中,系统的无矛盾性在系统内是不可证明的。至此,冯·诺依曼只能中止这方面的研究。
冯·诺依曼还得到过有关集合论本身的专门结果。他在数学基础和集合论方面的兴趣一直延续到他生命的结束。
2.量子理论的数学基础,算子环,遍历理论
在1930~l940年间,冯·诺依曼在纯粹数学方面取得的成就更为集中,创作更趋于成熟,声誉也更高涨。后来在一张为国家科学院填的问答表中,冯·诺依曼选择了量子理论的数学基础、算子环理论、各态遍历定理三项作为他最重要数学工作。
1927年冯·诺依曼已经在量子力学领域内从事研究工作。他和希尔伯待以及诺戴姆联名发表了论文《量子力学基础》。该文的基础是希尔伯特1926年冬所作的关于量子力学新发展的讲演,诺戴姆帮助准备了讲演,冯·诺依曼则从事于该主题的数学形式化方面的工作。文章的目的是将经典力学中的精确函数关系用概率关系代替之。希尔伯特的元数学、公理化的方案在这个生气勃勃的领域里获得了施展,并且获得了理论物理和对应的数学体系间的同构关系。对这篇文章的历史重要性和影响无论如何评价都不会过高。冯·诺依曼在文章中还讨论了物理学中可观察算符的运算的轮廓和埃尔米特算子的性质,无疑,这些内容构成了《量子力学的数学基础》一书的序曲。
l932世界闻名的斯普林格出版社出版了他的《量子力学的数学基础》,它是冯·诺依曼主要著作之一,初版为德文,1943年出了法文版,l949年为西班牙文版,l955年被译成英文出版,至今仍不失为这方面的经典著作。当然他还在量子统计学、量子热力学、引力场等方面做了不少重要工作。
客观地说,在量子力学发展史上,冯·诺依曼至少作出过两个重要贡献:狄拉克对量子理论的数学处理在某种意义下是不够严格的,冯·诺依曼通过对无界算子的研究,发展了希尔伯特算子理论,弥补了这个不足;此外,冯·诺依曼明确指出,量子理论的统计特征并非由于从事测量的观察者之状态未知所致。借助于希尔伯待空间算子理论,他证明凡包括一般物理量缔合性的量子理论之假设,都必然引起这种结果。
对于冯·诺依曼的贡献,诺贝尔物理学奖获得者威格纳曾作过如下评价:“在量子力学方面的贡献,就是以确保他在当代物理学领域中的特殊地位。”
在冯·诺依曼的工作中,希尔伯特空间上的算子谱论和算子环论占有重要的支配地位,这方面的文章大约占了他发表的论文的三分之一。它们包括对线性算子性质的极为详细的分析,和对无限维空间中算子环进行代数方面的研究。
算子环理论始于1930年下半年,冯·诺依曼十分熟悉诺特和阿丁的非交换代数,很快就把它用于希尔伯特空间上有界线性算子组成的代数上去,后人把它称之为冯·诺依曼算子代数。
1936~l940年间,冯·诺依曼发表了六篇关于非交换算子环论文,可谓20世纪分析学方面的杰作,其影响一直延伸至今。冯·诺依曼曾在《量子力学的数学基础》中说过:由希尔伯特最早提出的思想就能够为物理学的量子论提供一个适当的基础,而不需再为这些物理理论引进新的数学构思。他在算子环方面的研究成果应验了这个目标。冯·诺依曼对这个课题的兴趣贯穿了他的整个生涯。
算子环理论的一个惊人的生长点是由冯·诺依曼命名的连续几何。普通几何学的维数为整数1、2、3等,冯·诺依曼在著作中已看到,决定一个空间的维数结构的,实际上是它所容许的旋转群。因而维数可以不再是整数,连续级数空间的几何学终于提出来了。
1932年,冯·诺依曼发表了关于遍历理论的论文,解决了遍历定理的证明,并用算子理论加以表述,它是在统计力学中遍历假设的严格处理的整个研究领域中,获得的第一项精确的数学结果。冯·诺依曼的这一成就,可能得再次归功于他所娴熟掌握的受到集合论影响的数学分析方法,和他自己在希尔伯特算子研究中创造的那些方法。它是20世纪数学分析研究领域中取得的最有影响成就之一,也标志着一个数学物理领域开始接近精确的现代分析的一般研究。
此外冯·诺依曼在实变函数论、测度论、拓扑、连续群、格论等数学领域也取得不少成果。1900年希尔伯特在那次著名的演说中,为20世纪数学研究提出了23个问题,冯·诺依曼也曾为解决希尔伯特第五问题作了贡献。
3.一般应用数学
1940年,是冯·诺依曼科学生涯的一个转换点。在此之前,他是一位通晓物理学的登峰造极的纯粹数学家;此后则成了一位牢固掌握纯粹数学的出神入化的应用数学家。他开始关注当时把数学应用于物理领域去的最主要工具——偏微分方程。研究同时他还不断创新,把非古典数学应用到两个新领域:对策论和电子计算机。
冯·诺依曼的这个转变一方面来自他长期对数学物理问题的钟情;另一方面来自当时社会方面的需要。第二次世界大战爆发后,冯·诺依曼应召参与了许多军事科学研究计划和工程项目。1940~1957年任马里兰阿伯丁试验弹道研究实验室科学顾问;1941~1955年在华盛顿海军军械局;1943~1955年任洛斯·阿拉莫斯实验室顾问;1950~1955年,陆军特种武器设计委员会委员;1951~1957年。美国空军华盛顿科学顾问委员会成员;1953~1957年,原子能技术顾问小组成员;1954~1957年,导弹顾问委员会主席。
冯·诺依曼研究过连续介质力学。很久以来,他对湍流现象一直感兴趣。l937年他关注纳维—斯克克斯方程的统计处理可能性的讨论,1949年他为海军研究部写了《湍流的最新理论》。
冯·诺依曼研究过激波问题。他在这个领域中的大部分工作,直接来自国防需要。他在碰撞激波的相互作用方面贡献引入注目,其中有一结果,是首先严格证明了恰普曼—儒格假设,该假设与激波所引起的燃烧有关。关于激波反射理论的系统研究由他的《激波理论进展报告》开始。
冯·诺依曼研究过气象学。有相当一段时间,地球大气运动的流体力学方程组所提出的极为困难的问题—直吸引着他。随着电子计算机的出现,有可能对此问题作数值研究分析。冯·诺依曼搞出的第一个高度规模化的计算,处理的是一个二维模型,与地转近似有关。他相信人们最终能够了解、计算并实现控制以致改变气候。
冯·诺依曼还曾提出用聚变引爆核燃料的建议,并支持发展氢弹。1947年军队发嘉奖令,表扬他是物理学家、工程师、武器设计师和爱国主义者。
4.对策论
冯·诺依曼不仅曾将自己的才能用于武器研究等,而且还用于社会研究。由他创建的对策论,无疑是他在应用数学方面取得的最为令人羡慕的杰出成就。现今,对策论主要指研究社会现象的特定数学方法。它的基本思想,就是分析多个主体之间的利害关系时,重视在诸如下棋、玩扑克牌等室内游戏中竞赛者之间的讨价还价,交涉,结伙,利益分配等行为方式的类似性。
对策论的一些想法,20年代初就曾有过,真正的创立还得从冯·诺依曼1928年关于社会对策理论的论文算起。在这篇文章中,他证明了最小最大定理,这个定理用于处理一类最基本的二人对策问题。如果对策双方中的任何一方,对每种可能的策略,考虑了可能遭到的最大损失,从而选择“最大损失”最小的一种为“最优”策略,那么从统计角度来看,他就能够确保方案是最佳的。这方面的工作大致已达到完善。在同一篇论文中,冯·诺依曼也明确表述了n个游戏者之间的一般对策。
对策论也被用于经济学。经济理论中的数学研究方法,大致可分为定性研究为目标的纯粹理论和以实证的、统计的研究为目标的计量经济学。前者称为数理经济学,正式确立于本世纪40年代之后。无论在思想上或方法上,都明显地受到对策论的影响。
数理经济学,过去模仿经典数学物理的技巧,所用的数学工具主要是微积分和微分方程、将经济问题当成经典力学问题处理。显然,几十个商人参加的贸易洽谈会,用经典数学分析处理,其复杂程度远远超过太阳系行星的运动,这种方法的效果往往很难是预期的。冯·诺依曼毅然放弃这种简单的机械类比,代之以新颖的对策论观点和新的数学—和凸性的思想。
1944年,冯·诺依曼和摩根斯特思合著的《对策论和经济行为》是这方面的奠基性著作。论文包含了对策论的纯粹数学形式的阐述以及对于实际应用的详细说明。这篇论文以及所作的与某些经济理论的基本问题的讨论,引起了对经济行为和某些社会学问题的各种不同研究,时至今日,这已是应用广泛、羽毛日益丰盛的一门数学学科。有些科学家热情颂扬它可能是“20世纪前半期最伟大的科学贡献之一”。
5.计算机
对冯·诺依曼声望有所贡献的最后一个课题是电子计算机和自动化理论。
早在洛斯·阿拉莫斯,冯·诺依曼就明显看到,即使对一些理论物理的研究,只是为了得到定性的结果,单靠解析研究也已显得不够,必须辅之以数值计算。进行手工计算或使用台式计算机所需化费的时间是令人难以容忍的,于是冯·诺依曼劲头十足的开始从事电子计算机和计算方法的研究。
1944~l945年间,冯·诺依曼形成了现今所用的将一组数学过程转变为计算机指令语言的基本方法,当时的电子计算机(如ENIAC)缺少灵活性、普适性。冯·诺依曼关于机器中的固定的、普适线路系统,关于“流图”概念,关于“代码”概念为克服以上缺点作出了重大贡献。尽管对数理逻辑学家来说,这种安排是显见的。
计算机工程的发展也应大大归功于冯·诺依曼。计算机的逻辑图式,现代计算机中存储、速度、基本指令的选取以及线路之间相互作用的设计,都深深受到冯·诺依曼思想的影响。他不仅参与了电子管元件的计算机ENIAC的研制,并且还在普林斯顿高等研究院亲自督造了一台计算机。稍前,冯·诺依曼还和摩尔小组一起,写出了一个全新的存贮程序通用电子计算机方案EDVAC,长达l0l页的报告轰动了数学界。这一向专搞理论研究的普林斯顿高等研究院也批准让冯·诺依曼建造计算机,其依据就是这份报告。
速度超过人工计算千万倍的电子计算机,不仅极大地推动数值分析的进展,而且还在数学分析本身的基本方面,刺激着崭新的方法的出现。其中,由冯·诺依曼等制订的使用随机数处理确定性数学问题的蒙特卡洛方法的蓬勃发展,就是突出的实例。
19世纪那种数学物理原理的精确的数学表述,在现代物理中似乎十分缺乏。基本粒子研究中出现的纷繁复杂的结构,令人眼花廖乱,要想很决找到数学综合理论希望还很渺茫。单从综合角度看,且不提在处理某些偏微分方程时所遇到的分析困难,要想获得精确解希望也不大。所有这些都迫使人们去寻求能借助电子计算机来处理的新的数学模式。冯·诺依曼为此贡献了许多天才的方法:它们大多分载在各种实验报告中。从求解偏微分方程的数值近似解,到长期天气数值须报,以至最终达到控制气候等。
在冯·诺依曼生命的最后几年,他的思想仍甚活跃,他综合早年对逻辑研究的成果和关于计算机的工作,把眼界扩展到一般自动机理论。他以特有的胆识进击最为复杂的问题:怎样使用不可靠元件去设计可靠的自动机,以及建造自己能再生产的自动机。从中,他意识到计算机和人脑机制的某些类似,这方面的研究反映在西列曼讲演中;逝世后才有人以《计算机和人脑》的名字,出了单行本。尽管这是未完成的著作,但是他对人脑和计算机系统的精确分析和比较后所得到的一些定量成果,仍不失其重要的学术价值。
发布者:知识学院,火焰兔收录并登载此文出于传递更多信息之目的,并不意味着赞同其观点或证实其描述。文章内容仅供参考,不做权威认证,如若验证其真实性,请咨询相关权威专业人士。https://huoyantu.com/11933.html
版权声明:
国家知识产权局《要求删除或断开链接侵权网络内容的通知》填写说明:http://www.ncac.gov.cn/chinacopyright/contents/12227/342400.shtml
请按照此通知格式填写(或提供具有法律效应且证据链完整的证明)发至本站的邮箱 huoyantu@qq.com
(收到核实后 24小时内绝对处理)